

z3c.celery

Integration of Celery 4 with Zope 3.

This package is compatible with Python version 2.7.

Features

	integration into the Zope transaction (schedule tasks at
transaction.commit())

	runs jobs

	in a Zope environment with loaded ZCML and ZODB connection

	in a transaction with retry on ConflictError

	as the user who scheduled the job

	test infrastructure to run tests in-line or in a worker

	support for py.test fixtures and zope.testrunner layers

	Usage
	Integration with Zope

	Worker setup

	Execute code after transaction.abort()

	Accessing the task_id in the task

	Logging

	Running end to end tests using layers

	Implementation notes

	Running the tests

	API Reference

	License

	Change log for z3c.celery
	1.2.3 (2018-06-28)

	1.2.2 (2018-03-23)

	1.2.1 (2018-02-02)

	1.2.0 (2018-01-23)

	1.1.0 (2017-10-11)

	1.0.2 (2017-10-05)

	1.0.1 (2017-10-04)

	1.0 (2017-09-29)

	0.1 (2017-02-21)

	Index

Usage

Integration with Zope

To successfully configure Celery in Zope place the celeryconfig.py in the
PYTHONPATH. The configuration will be taken from there.

Define your tasks as shared_task() so they can be used in the tests and
when running the server.

z3c.celery provides its own celery app: z3c.celery.CELERY. It does the
actual the integration work.

Jobs by default run as the same principal that was active when the job was
enqueued. You can override this by passing a different principal id to delay:

my_task.delay(my, args, etc, _principal_id_='zope.otheruser')

Worker setup

Place the celeryconfig.py in your working directory. Now you can start the
celery worker using the following command:

$ celery worker --app=z3c.celery.CELERY --config=celeryconfig

The celeryconfig [http://docs.celeryproject.org/en/latest/userguide/configuration.html] can include all default celery config options. In addition
the variable ZOPE_CONF pointing to your zope.conf has to be present.
This celeryconfig.py and the referenced zope.conf should be identical to
the ones, your Zope is started with.

Additionally you can specify a variable LOGGING_INI pointing to a logging
config (an ini file in configuration file format [https://docs.python.org/2/library/logging.config.html#configuration-file-format], which might be your
paste.ini). See Logging for details.

Example:

ZOPE_CONF = '/path/to/zope.conf'
LOGGING_INI = '/path/to/paste.ini'
broker_url = 'redis://localhost:6379/0'
result_backend = 'redis://localhost:6379/0'
imports = ['my.tasks']

Execute code after transaction.abort()

If running a task fails the transaction is aborted. In case you need to write
something to the ZODB raise z3c.celery.celery.HandleAfterAbort in your
task. This exception takes a callable and its arguments. It is run in a
separate transaction after transaction.abort() for the task was called.

It is possible to pass a keyword argument message into
HandleAfterAbort. This message will be serialized
and returned to celery in the task result. It is not passed to the callback.

Accessing the task_id in the task

There seems currently no way to get the task_id from inside the task when it is
a shared task. The task implementation in z3c.celery provides a solution.
You have to bind the shared task. This allows you to access the task instance
as first parameter of the task function. The task_id is stored there on the
task_id attribute. Example:

@shared_task(bind=True)
def get_task_id(self):
 """Get the task id of the job."""
 return self.task_id

Logging

z3c.celery provides a special formatter for the python logging module,
which can also be used as a generic formatter as it will omit task specific
output if there is none. It allows to include task id and task name of the
current task in the log message if they are available. Include it in your
logging configuration:

[formatter_generic]
class = z3c.celery.logging.TaskFormatter
format = %(asctime)s %(task_name)s %(task_id)s %(message)s

Running end to end tests using layers

Motivation: Celery 4.x provides py.test fixtures. There is some infrastructure
in this package to use these fixtures together with plone.testing.Layer.
The following steps are required to set the layers up correctly:

In your package depend on z3c.celery[layer].

Create a layer which provides the following resources:

	celery_config: dict of config options for the celery app. It has to
include a key ZOPE_CONF which has to point to a zope.conf file.
See the template in z3c.celery.testing.

	celery_parameters: dict of parameters used to instantiate Celery

	celery_worker_parameters: dict of parameters used to instantiate celery
workers

	celery_includes: list of dotted names to load the tasks in the worker

Example:

class CelerySettingsLayer(plone.testing.Layer):
 """Settings for the Celery end to end tests."""

 def setUp(self):
 self['celery_config'] = {
 'ZOPE_CONF': '/path/to/my/test-zope.conf'}
 self['celery_parameters'] = (
 z3c.celery.conftest.celery_parameters())
 self['celery_worker_parameters'] = {'queues': ('celery',)}
 self['celery_includes'] = ['my.module.tasks']

 def tearDown(self):
 del self['celery_config']
 del self['celery_includes']
 del self['celery_parameters']
 del self['celery_worker_parameters']

Create a layer which brings the settings layer and the EndToEndLayer
together, example:

CELERY_SETTINGS_LAYER = CelerySettingsLayer()
CONFIGURED_END_TO_END_LAYER = z3c.celery.layer.EndToEndLayer(
 bases=[CELERY_SETTINGS_LAYER], name="ConfiguredEndToEndLayer")

Create a layer which combines the configured EndToEndLayer with the ZCMLLayer
of your application. (This should be the one created by
plone.testing.zca.ZCMLSandbox.)

Example:

MY_PROJ_CELERY_END_TO_END_LAYER = plone.testing.Layer(
 bases=(CONFIGURED_END_TO_END_LAYER, ZCML_LAYER),
 name="MyProjectCeleryEndToEndLayer")

Note

The ZCMLLayer has to be the last one in the list of the bases because the
EndToEndLayer forks the workers when it is set up. If the ZCML is already
there running a task in the worker will break because as first step it has
to load the zope.conf.

Caution

All tasks to be run in end to end tests have to shared tasks. This is
necessary because the end to end tests have to use a different Celery
instance than z3c.celery.CELERY. Example:

@celery.shared_task
def my_task():
 do_stuff()

Implementation notes

In case of a ZODB.POSException.ConflictError the worker process will wait
and restart the operation again. This is done with active wait
(time.sleep()) and not via the self.retry() mechanism of celery, as we
were not able to figure out to get it flying.

Running the tests

To run the test suite of z3c.celery you need a redis-server listening on
the default port. The tests use the redis database /12, which means that no
other celery worker should be connected to that database and this database
should not be used for other purposes.

To run the actual tests, simply run tox [https://tox.readthedocs.io/en/latest/] in the root directory of the
package.

Together with the tests, this documentation will be build by tox [https://tox.readthedocs.io/en/latest/].

API Reference

	z3c.celery.celery

	

	z3c.celery.layer

	

License

Copyright (c) 2016-2017 by ZEIT ONLINE GmbH and contributors.

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

* Neither the name of the ZEIT ONLINE GmbH nor the names of its contributors
 may be used to endorse or promote products derived from this software
 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL ZEIT ONLINE BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Change log for z3c.celery

1.2.3 (2018-06-28)

	Add logging for task retry.

1.2.2 (2018-03-23)

	Ensure ZODB connection can be closed, even if execution is aborted in the
middle of a transaction

1.2.1 (2018-02-02)

	Add bw-compat for persisted tasks that still have a _task_id_ parameter

1.2.0 (2018-01-23)

	Support task retry

1.1.0 (2017-10-11)

	Make worker process boot timeout configurable

1.0.2 (2017-10-05)

	Also apply “always endInteration” to HandleAfterAbort

	Also apply “retry on ConflictError” to HandleAfterAbort

1.0.1 (2017-10-04)

	Always call endInteraction, even on error during commit or abort,
so we don’t pollute the interaction state for the next task run

1.0 (2017-09-29)

	Introduce Abort control flow exception

	Allow overriding the principal id the job runs as

	Support reading configuration from a filesystem-based (non-importable) python file

	Don’t use celery’s deprecated default app mechanism

	Support running an actual “celery worker” with the single-process “solo” worker_pool

0.1 (2017-02-21)

	Initial release. Extract from zeit.cms.

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 z3c.celery

 		
 Usage

 		
 Integration with Zope

 		
 Worker setup

 		
 Execute code after transaction.abort()

 		
 Accessing the task_id in the task

 		
 Logging

 		
 Running end to end tests using layers

 		
 Implementation notes

 		
 Running the tests

 		
 API Reference

 		
 License

 		
 Change log for z3c.celery

 		
 1.2.3 (2018-06-28)

 		
 1.2.2 (2018-03-23)

 		
 1.2.1 (2018-02-02)

 		
 1.2.0 (2018-01-23)

 		
 1.1.0 (2017-10-11)

 		
 1.0.2 (2017-10-05)

 		
 1.0.1 (2017-10-04)

 		
 1.0 (2017-09-29)

 		
 0.1 (2017-02-21)

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

